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An explosive plasma generator (EPG) [I] is often employed to fill a cavity with a dense 
plasma, for example, in the study of intense ablation regimes, in explosive lamps, in ex- 
plosive plasmachemical sysnthesis, etc. Here the apparatus consists of an EPG connected by a 
pipe (plasma conduit) with working cavity [2-5]. 

The difficulty of performing measurements in a nonstationary flow of dense plasma leads 
to the fact that experimental information on the operation of these devices is incomplete. 
Usually the mass and energy of the plasma are determined experimentally, and sometimes the 
pressure, temperature, velocity, and heat fluxes are measured at separate points [1-5]. A 
more complete description of the processes occurring can be obtained by combined use of 
experimental data and numerical calculations. 

Numerical simulation of the EPG itself was performed in [6-8], and the radiative charac- 
teristics of the explosive lamp are studied in [9]. Taking into account radiant heat trans- 
fer [8, 9] gives a more complete description of the flow of dense plasma, but it is laborious 
and expensive with the use of computers. 

In a number of practical problems Boltzmann's number Bo >> i, which makes it possible to 
neglect radiant heat transfer and thereby simplify the mathematical model of the process. 

In this work the motion of the plasma in the pipe and the filling of the cavity with the 
plasma are studied by the numerical method of S. K. Godunov. 

We are interested in a nonstationary, two-dimensional, axisymmetric plasma flow in a 
pipe and cylindrial cavity. The flow is assumed to be adiabatic and the plasma is assumed to 
be nonviscous and thermally nonconducting. The equilibrium ionization is taken into account 
by introducing into the equation of state a constant effective adiabatic index. 

The system of Euler's gas-dynamic equations in cylindrical coordinates has the form 
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and r are the longitudinal and radial coordinates; and, 7 is the effective adiabatic index. 

The system (I) is supplemented by Ralzer's equations [i0] for determining the tempera- 
ture and degree of ionization of the plasma 
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where m is the degree of ionization; I m is the ionization potential; T is the temperature; N 
is the number of ions per unit mass; Qm= ZI m is the energy of detachment of m electrons 
from an atom; k is the Boltzmann constant; A = 4.8.10~I deg-3/2.m -3 is a constant. 

Dnepropetrovsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. i, pp. 16-20, January-February, 1988. Original article submitted October 15, 1986. 

14 0021-8944/88/2901-0014512.50 �9 1988 Plenum Publishing Corporation 



k 

Fig. 1 

The equations (I) are integrated in a region (Fig. i) consisting of the pipe OAB and the 
cavity BCDE. The boundary conditions on the walls of the pipe, on the walls of the cavity, 
and on the symmetry axis OE require that the normal velocity component vanish. 

It is assumed that initially the plasmoid occupies some volume (0 ~ x 5 6) in the Ripe. 
The initial conditions for the plasma are: e(0, x, r) = e0,p(0 , x, r) = Po, u(O,x, r) = v(O, x, r) = O. 

The pipe outside the plasmoid and the cavity are filled at t = 0 with a cold stationary gas 
or they are evacuated. 

The starting behavior of the plasma P0 and the effective adiabatic index ~, which is 
assumed to be constant in what follows, are found from the given initial conditions c o and P0 
from the solution of the system (2). 

The system of gas-dynamic equations (i) can be solved numerically using Godunov's 
finite-difference schemes [II] on a stationary rectangular grid, oriented along the coor- 
dinate axes. This scheme has the feature that there is a decoupling along the coordinate 
axes, enabling integration of the system (i) first along the direction x over a half time 
step and then over r over the second half step. 

The finite difference equations for the system (I) have the following form along the Ox 
axis 

and along the Or axis 
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Here p, p, u, and v are "small" quantities, calculated at the centers of the computational 
cells on the lower and upper time layers; R, P, U, and V are "large" quantities, determined 
on the boundaries of the computational cells with the help of the algorithm for the decom- 
position of an arbitrary discontinuity [ii]; the indices i and 2 refer to the boundaries of 
neighboring cells. The temperature T and degree of ionization m are determined from the 
solution of the system (2) using the values of ( and p obtained when integrating the system 
(1). 
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The calculations are performed on a BESM-6 computer using a FORTRAN program. The maxi- 
mum number of nodes in the computational grid is I00 x 45. Table I gives the parameters of 
two setups studied (see Fig. i). The first one was employed in [2] to study intense ablation 
regimes and the second one was employed in [5] to study the parameters of a plasma jet. The 
calculations were performed for cavities filled with air under normal conditions, while for 
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setup 2 they were also performed for a cavity evacuated to a residual pressure of 0.I Pa. 
The results obtained are presented in Figs. 2-5. 

Figures 2 and 4 show the distribution of the dimensionless pressure P/P0 at different 
times along the symmetry axis of the setups i and 2 ~01-- 18.5 Gpa, Po~ ~ 25.1GPa) with a 
cavity filled with air. During the starting period the flow in the pipes is strongly non- 
uniform and nonstationary. The duration of this period equals, in order of magnitude, = ~/c 0 
(c o is the starting velocity of sound in the plasmoid). Then a flow with small gradients of 
the pressure, density, and temperature is established in the pipe. In the latest phases, 
when the pressure~in the pipe drops to a value less than 0.01 of the initial value, reverse 
flow of plasma from the cavity into the pipe is observed. 

From the pipe the plasma flows with a supersonic velocity into the cavity, where the 
flow becomes substantially two-dimensional, and the pressure, density, and temperature drop 
sharply. Figure 3 illustrates the process of filling of the cavity of the setup 1 with 
plasma. The distributions along the perimeter of the cavity of the dimensionless pressure 
and temperature (a and b, respectively) are shown for different times. One-half the bottom 
ED, the side wall DC, and part of the cover CB are drawn along the horizontal axis. After 
reaching the bottom of the cavity the plasma jet forms a stagnation shock wave and starts to 
spread out along the bottom, and then along the walls of the cavity, forming stagnation zones 
with elevated pressure and temperature in the corners of the cavity. The maximum values of 
the parameters are obviously reached on the axis at the point of stagnation of the starting 
jet. The filling of the cavity with the plasma gradually approaches equilibrium. The time 
for establishing equilbrium filling equals, in order of magnitude, =3d/c I (d is the charac- 
teristic size of the cavity and c I is the velocity of sound in the plasma with equilibrium 
filling of the cavity). 

In the longer cavity of setup 2 (Fig. 4), because of radial spreading the jet strikes 
the lateral wall of the cavity even before it strikes the bottom; this gives rise to a local 
increase of the pressure. 

We note that the computationally determined flow pattern gives a qualitatively correct 
description of the actual process. The flow in the pipe and the cavity are supersonic, the 
plasma flow expands as it enters the cavity, and the jet strikes the side wall of the cavity 
and a stagnation wave is observed at the bottom. 

The computational and experimental data were compared in order to make a quantitive 
evaluation of the accuracy of the chosen model. 

Figure 5 shows for the setup 2 the pressure at the bottom of the cavity at the point of 
stagnation and the hydrodynamic energy flux W= pu2/2 at the boundary of the stagnated gas: 
the curves I show the calculation for the evacuated cavity, i' the calculation for an air- 
filled cavity, and 2 the experimental data taken from [5]. In Fig. 5a time is measured on 
the curves from the moment of maximum pressure. The results of the calculation and experi- 
ment agree to within about 30%. 

As regards the temperature in the stagnation zone of the plasma flow at the bottom of 
the cavity, the calculation gives a temperature that is more than two times higher than the 
temperature measured experimentally in [5]. This significant discrepancy is obviously ex- 
plained by the fact that in the calculation the cooling of the plasma was neglected, while in 
the experiment the brightness temperature, which is always less than the true temperature, is 
measured. 

The calculations performed and their comparison with experiment show that the mathemati- 
cal model employed, based on Euler's equations, can be used to analyze and predict the out- 
come of experiments with a two-dimensional nonstati0nary plasma flow from an explosive gener- 
ator into volumes with a complicated shape. For processes with a longer duration or for a 
hotter plasma, heat-transfer processes will also have to be included in the mathematical 
model. 
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